Premarket Approval Applications for In Vitro Diagnostic Devices Pertaining to Hepatitis C Viruses (HCV): Assays Intended for Diagnosis, Prognosis, or Monitoring of HCV Infection, Hepatitis C, or Other HCV-associated Disease; Draft Guidance for Industry and FDA # Draft Guidance - Not for Implementation This guidance document is being distributed for comment purposes only. Draft released for comment on [release date as stated in FR Notice] This document supercedes the draft guidance entitled, "Premarket Approval Applications for Assays Pertaining to Hepatitis C Viruses (HCV) That Are Indicated for Diagnosis or Monitoring of HCV Infection or Associated Disease," draft released for comment on October 8, 1999. U.S. Department of Health and Human Services Food and Drug Administration Center for Devices and Radiological Health Microbiology Branch Division of Clinical Laboratory Devices Office of Device Evaluation # **Preface** # **Public Comment:** For 90 days following the date of publication in the Federal Register of the notice announcing the availability of this guidance, comments and suggestions regarding this document should be submitted to the Docket No. assigned to that notice, Dockets Management Branch, Division of Management Systems and Policy, Office of Human Resources and Management Services, Food and Drug Administration, 5630 Fishers Lane, Room 1061, (HFA-305), Rockville, MD 20852. # **Additional Copies:** Additional copies are available from the Internet on the CDRH home page: http://www.fda.gov/cdrh or CDRH Facts on Demand at 1-800-899-0381 or 301-827-0111 from a touch-tone telephone. Press 1 to enter the system and enter the document number 1353 followed by the pound sign (#). Follow the remaining voice prompts to complete your request. # Table of Contents | I. I | Introduction | 1 | |-------|--|----| | A. | Purpose | 1 | | В. | Definition | 1 | | C. | Regulatory jurisdiction | | | II. I | Background | | | III. | Clinical Significance and Utility | 4 | | IV. | Device Description | | | A. | Intended Use | 4 | | В. | Contraindications | | | C. | | 5 | | | 1. Evidence of HCV infection, where the state of infection or associated disease is not | | | 5 | specified. | | | 2 | 2. Screening or managing donors of blood, plasma, tissue, or organs. | | | | 3. Aid in detecting asymptomatic acute infection with HCV (e.g., asymptomatic following | | | 6 | exposure). | | | 4 | 4. Aid in detecting asymptomatic chronic HCV infection. | | | : | 5. Aid in diagnosis of acute hepatitis C | | | (| 6. Aid in diagnosis of chronic hepatitis C | | | | 7. Aid in diagnosis of hepatitis C (indiscriminate between acute and chronic) | | | | 8. Monitoring active HCV infection includes at least several important indications: | | | 1 | 9. Novel indications for use | | | D. | | 7 | | E. | Specimen collection, transport, and processing materials (that are included in the kit, | | | | ecified, or recommended) | | | | Performance Characteristics | | | A. | Preclinical (Analytical) Laboratory Studies | | | | 1. Setting cutoff(s) or calibration curve | | | | 2. Analytical sensitivity | | | | 3. Limits of Quantitation (LOQ) for quantitative and semi-quantitative assays | 11 | | | 4. Specificity for detecting HCV-RNA | | | | 5. Interference studies | | | | 6. Verification of methods for decontamination and specimen inactivation | | | | 7. Validation of recommendations for specimen collection, transport, and storage | | | | 8. Infectious agents in reagents derived from humans | | | | 9. Validation of reagent stability | | | | 10. Reproducibility (precision) | | | | 11. Additional studies | | | | 12. Instrument performance | | | В. | $oldsymbol{\mathcal{U}}$ | | | | 1. Intended use, indications for use, and indicated populations | | | | 2. Specification for the number of individuals or specimens using statistically based crit | | | | that will be studied for each claimed indication. | | | | Study sites | IJ | | • | 4. Types of studies and specimen collections | 10 | | 5. Laboratory results as inclusion, exclusion, or characterizing criteria | Table 1. Comparative-assay results as evidence of HCV infection, per package insert instructions: interpretation for categorizing specimens or individuals in studies | Table 1. Comparative-assay results as evidence of HCV infection, per package insert instructions: interpretation for categorizing specimens or individuals in studies | | | |--|---|---|---|----| | Table 1. Comparative-assay results as evidence of HCV infection, per package insert instructions: interpretation for categorizing specimens or individuals in studies | Table 1. Comparative-assay results as evidence of HCV infection, per package insert instructions: interpretation for categorizing specimens or individuals in studies | Table 1. Comparative-assay results as evidence of HCV infection, per package insert instructions: interpretation for categorizing specimens or individuals in studies | | | | instructions: interpretation for categorizing specimens or individuals in studies | instructions: interpretation for categorizing specimens or individuals in studies | instructions: interpretation for categorizing specimens or individuals in studies | 5. Laboratory results as inclusion, exclusion, or characterizing criteria | 16 | | instructions: interpretation for categorizing specimens or individuals in studies | instructions: interpretation for categorizing specimens or individuals in studies | instructions: interpretation for categorizing
specimens or individuals in studies | able 1. Comparative-assay results as evidence of HCV infection, per package insert | | | 7. Inclusion and exclusion criteria for specimens | 7. Inclusion and exclusion criteria for specimens 28. Laboratory procedures 29. Data analysis 20. Data analysis 20. C. Design and Protocols: Additional Recommendations for Clinical Studies to Determine Performance for Specific Indications for Use 21. Evidence of HCV infection, where the state of infection or associated disease is not specified 29. Data analysis: supporting claim for evidence of HCV infection, where the state of infection or associated disease is not specified. (Indication 1 per sections IV.C and V.C). 20. Table 3. Indication 1 (Evidence of HCV infection where the state of infection or associated disease is not specified) Examples of groups and subgroups that suggest but do not always demonstrate performance for states of infection or associated disease 22. Aid in detecting acute asymptomatic HCV infection 23. Aid in detecting acute asymptomatic HCV infection 24. Aid in diagnosis of acute hepatitis C 25. Aid in diagnosis of chronic hepatitis C 26. Aid in diagnosis of chronic hepatitis C 27. Figure 1. Determining performance: new EIA as aid for presumptive diagnosis of chronic hepatitis C 27. Monitoring active HCV infection 29. REFERENCES 3 | 7. Inclusion and exclusion criteria for specimens. 8. Laboratory procedures. 9. Data analysis. C. Design and Protocols: Additional Recommendations for Clinical Studies to Determine Performance for Specific Indications for Use. 1. Evidence of HCV infection, where the state of infection or associated disease is not specified. Table 2. Data analysis: supporting claim for evidence of HCV infection, where the state of infection or associated disease is not specified. (Indication 1 per sections IV.C and V.C) Table 3. Indication 1 (Evidence of HCV infection where the state of infection or associated disease is not specified) Examples of groups and subgroups that suggest but do not alway demonstrate performance for states of infection or associated disease. 2. Aid in detecting acute asymptomatic HCV infection. 3. Aid in detecting acute asymptomatic HCV infection. 4. Aid in diagnosis of acute hepatitis C. 5. Aid in diagnosis of chronic hepatitis C. Figure 1. Determining performance: new EIA as aid for presumptive diagnosis of chronic hepatitis C. 6. Aiding diagnosis of hepatitis C (indiscriminate between acute and chronic). 7. Monitoring active HCV infection. REFERENCES. | nstructions: interpretation for categorizing specimens or individuals in studies | | | 8. Laboratory procedures | 8. Laboratory procedures | 8. Laboratory procedures 9. Data analysis C. Design and Protocols: Additional Recommendations for Clinical Studies to Determine Performance for Specific Indications for Use 1. Evidence of HCV infection, where the state of infection or associated disease is not specified. Table 2. Data analysis: supporting claim for evidence of HCV infection, where the state infection or associated disease is not specified. (Indication 1 per sections IV.C and V.C). Table 3. Indication 1 (Evidence of HCV infection where the state of infection or associate disease is not specified) Examples of groups and subgroups that suggest but do not alway demonstrate performance for states of infection or associated disease 2. Aid in detecting acute asymptomatic HCV infection 3. Aid in detecting chronic asymptomatic HCV infection 4. Aid in diagnosis of acute hepatitis C 5. Aid in diagnosis of chronic hepatitis C 6. Figure 1. Determining performance: new EIA as aid for presumptive diagnosis of chronic hepatitis C 6. Aiding diagnosis of hepatitis C (indiscriminate between acute and chronic) 7. Monitoring active HCV infection REFERENCES. | 6. Inclusion and exclusion criteria for individuals | 18 | | 9. Data analysis | 9. Data analysis | 9. Data analysis C. Design and Protocols: Additional Recommendations for Clinical Studies to Determine Performance for Specific Indications for Use 1. Evidence of HCV infection, where the state of infection or associated disease is not specified. Table 2. Data analysis: supporting claim for evidence of HCV infection, where the state of infection or associated disease is not specified. (Indication 1 per sections IV.C and V.C) Table 3. Indication 1 (Evidence of HCV infection where the state of infection or associate disease is not specified) Examples of groups and subgroups that suggest but do not alway demonstrate performance for states of infection or associated disease ^a 2. Aid in detecting acute asymptomatic HCV infection 3. Aid in detecting chronic asymptomatic HCV infection 4. Aid in diagnosis of acute hepatitis C 5. Aid in diagnosis of chronic hepatitis C Figure 1. Determining performance: new EIA as aid for presumptive diagnosis of chronic hepatitis C 6. Aiding diagnosis of hepatitis C (indiscriminate between acute and chronic) 7. Monitoring active HCV infection REFERENCES | 7. Inclusion and exclusion criteria for specimens | 21 | | C. Design and Protocols: Additional Recommendations for Clinical Studies to Determine Performance for Specific Indications for Use | C. Design and Protocols: Additional Recommendations for Clinical Studies to Determine Performance for Specific Indications for Use | C. Design and Protocols: Additional Recommendations for Clinical Studies to Determine Performance for Specific Indications for Use | 8. Laboratory procedures | 22 | | Performance for Specific Indications for Use 1. Evidence of HCV infection, where the state of infection or associated disease is not specified. 22. Table 2. Data analysis: supporting claim for evidence of HCV infection, where the state of infection or associated disease is not specified. (Indication 1 per sections IV.C and V.C) 24 Table 3. Indication 1 (Evidence of HCV infection where the state of infection or associated disease is not specified) Examples of groups and subgroups that suggest but do not always demonstrate performance for states of infection or associated disease 2. Aid in detecting acute asymptomatic HCV infection 3. Aid in detecting chronic asymptomatic HCV infection 4. Aid in diagnosis of acute hepatitis C 5. Aid in diagnosis of chronic hepatitis C 5. Aid in diagnosis of chronic hepatitis C 7. Figure 1. Determining performance: new EIA as aid for presumptive diagnosis of chronic hepatitis C 7. Monitoring active HCV infection 29. REFERENCES 30. | Performance for Specific Indications for Use 1. Evidence of HCV infection, where the state of infection or associated disease is not specified. 2. Table 2. Data analysis: supporting claim for evidence of HCV infection, where the state of infection or associated disease is not specified. (Indication 1 per sections IV.C and V.C). 2 Table 3. Indication 1 (Evidence of HCV infection where the state of infection or associated disease is not specified) Examples of groups and subgroups that suggest but do not always demonstrate performance for states of infection or associated disease 2. Aid in detecting acute asymptomatic HCV infection. 2. Aid in detecting chronic asymptomatic HCV infection. 2. Aid in diagnosis of acute hepatitis C. 2. Aid in diagnosis of chronic hepatitis C. 2. Aid in diagnosis of chronic hepatitis C. 3. Aid in diagnosis of chronic hepatitis C. 4. Aid in diagnosis of chronic hepatitis C. 5. Aid in diagnosis of chronic hepatitis C. 2. 2 4. Aid in diagnosis of chronic hepatitis C. 3. 2 4. Aid in diagnosis of chronic hepatitis C. 4. Aid in diagnosis of chronic hepatitis C. 5. Aid in diagnosis of chronic hepatitis C. 6. Aiding diagnosis of hepatitis C (indiscriminate between acute and chronic). 2. 2 REFERENCES. 3. 3 | Performance for Specific Indications for Use 1. Evidence of HCV infection, where the state of infection or associated disease is not specified. Table 2. Data analysis: supporting claim for evidence of HCV infection, where the state of infection or associated disease is not specified. (Indication 1 per sections IV.C and V.C) Table 3. Indication 1 (Evidence of HCV infection where the state of infection or associated disease is not specified) Examples of groups and subgroups that suggest but do not alway demonstrate performance for states of infection or associated disease ^a | | 22 | | 1. Evidence of HCV infection, where the state of infection or associated disease is not specified | 1. Evidence of HCV infection, where the state of infection or associated disease is not specified | 1. Evidence of HCV infection, where the state of infection or associated disease is not specified. Table 2. Data analysis: supporting claim for evidence of HCV infection, where the state of infection or associated disease is not specified. (Indication 1 per sections IV.C and V.C) Table 3. Indication 1 (Evidence of HCV infection where the state of infection or associated disease is not specified) Examples of groups and subgroups that suggest but do not alway demonstrate performance for states of infection or associated disease and the end of | | | | specified | specified | Specified. Table 2. Data analysis: supporting claim for evidence of HCV infection, where the state of infection or associated disease is not specified. (Indication 1 per sections IV.C and V.C) Table 3. Indication 1 (Evidence of HCV infection where the state of infection or associated disease is not specified) Examples of groups and subgroups that suggest but do not alway demonstrate performance for states of infection or associated disease ^a | | 23 | | Table 2. Data analysis: supporting claim for evidence of HCV infection, where the state of infection or associated disease is not specified. (Indication 1 per sections IV.C and V.C) 24 Table 3. Indication 1 (Evidence of HCV infection where the state of infection or associated disease is not specified) Examples of groups and subgroups that suggest but do not always demonstrate performance for states of infection or associated disease ^a | Table 2. Data
analysis: supporting claim for evidence of HCV infection, where the state of infection or associated disease is not specified. (Indication 1 per sections IV.C and V.C) 2 Table 3. Indication 1 (Evidence of HCV infection where the state of infection or associated disease is not specified) Examples of groups and subgroups that suggest but do not always demonstrate performance for states of infection or associated disease ^a | Table 2. Data analysis: supporting claim for evidence of HCV infection, where the state of infection or associated disease is not specified. (Indication 1 per sections IV.C and V.C) Table 3. Indication 1 (Evidence of HCV infection where the state of infection or associated disease is not specified) Examples of groups and subgroups that suggest but do not alway demonstrate performance for states of infection or associated disease. 2. Aid in detecting acute asymptomatic HCV infection. 3. Aid in detecting chronic asymptomatic HCV infection. 4. Aid in diagnosis of acute hepatitis C. 5. Aid in diagnosis of chronic hepatitis C. Figure 1. Determining performance: new EIA as aid for presumptive diagnosis of chronic hepatitis C. 6. Aiding diagnosis of hepatitis C (indiscriminate between acute and chronic). 7. Monitoring active HCV infection. REFERENCES. | 1. Evidence of HCV infection, where the state of infection or associated disease is not | | | infection or associated disease is not specified. (Indication 1 per sections IV.C and V.C) 24 Table 3. Indication 1 (Evidence of HCV infection where the state of infection or associated disease is not specified) Examples of groups and subgroups that suggest but do not always demonstrate performance for states of infection or associated disease 26 2. Aid in detecting acute asymptomatic HCV infection 27 3. Aid in detecting chronic asymptomatic HCV infection 27 4. Aid in diagnosis of acute hepatitis C 27 5. Aid in diagnosis of chronic hepatitis C 27 Figure 1. Determining performance: new EIA as aid for presumptive diagnosis of chronic hepatitis C 26 6. Aiding diagnosis of hepatitis C (indiscriminate between acute and chronic) 29 REFERENCES 30 | infection or associated disease is not specified. (Indication 1 per sections IV.C and V.C) 2 Table 3. Indication 1 (Evidence of HCV infection where the state of infection or associated disease is not specified) Examples of groups and subgroups that suggest but do not always demonstrate performance for states of infection or associated disease ^a | infection or associated disease is not specified. (Indication 1 per sections IV.C and V.C) Table 3. Indication 1 (Evidence of HCV infection where the state of infection or associate disease is not specified) Examples of groups and subgroups that suggest but do not alway demonstrate performance for states of infection or associated disease. 2. Aid in detecting acute asymptomatic HCV infection. 3. Aid in detecting chronic asymptomatic HCV infection. 4. Aid in diagnosis of acute hepatitis C. 5. Aid in diagnosis of chronic hepatitis C. Figure 1. Determining performance: new EIA as aid for presumptive diagnosis of chronic hepatitis C. 6. Aiding diagnosis of hepatitis C (indiscriminate between acute and chronic). 7. Monitoring active HCV infection. REFERENCES. | | | | disease is not specified) Examples of groups and subgroups that suggest but do not always demonstrate performance for states of infection or associated disease ^a | disease is not specified) Examples of groups and subgroups that suggest but do not always demonstrate performance for states of infection or associated disease ^a | disease is not specified) Examples of groups and subgroups that suggest but do not alway demonstrate performance for states of infection or associated disease ^a | | | | disease is not specified) Examples of groups and subgroups that suggest but do not always demonstrate performance for states of infection or associated disease ^a | disease is not specified) Examples of groups and subgroups that suggest but do not always demonstrate performance for states of infection or associated disease ^a | disease is not specified) Examples of groups and subgroups that suggest but do not alway demonstrate performance for states of infection or associated disease ^a | | | | demonstrate performance for states of infection or associated disease ^a | demonstrate performance for states of infection or associated disease ^a | demonstrate performance for states of infection or associated disease ^a | , | | | 2. Aid in detecting acute asymptomatic HCV infection | 2. Aid in detecting acute asymptomatic HCV infection | 2. Aid in detecting acute asymptomatic HCV infection 3. Aid in detecting chronic asymptomatic HCV infection 4. Aid in diagnosis of acute hepatitis C 5. Aid in diagnosis of chronic hepatitis C Figure 1. Determining performance: new EIA as aid for presumptive diagnosis of chronic hepatitis C 6. Aiding diagnosis of hepatitis C (indiscriminate between acute and chronic) 7. Monitoring active HCV infection REFERENCES. | | | | 3. Aid in detecting chronic asymptomatic HCV infection 27 4. Aid in diagnosis of acute hepatitis C 27 5. Aid in diagnosis of chronic hepatitis C 27 Figure 1. Determining performance: new EIA as aid for presumptive diagnosis of chronic hepatitis C 28 6. Aiding diagnosis of hepatitis C (indiscriminate between acute and chronic) 29 7. Monitoring active HCV infection 29 REFERENCES 30 | 3. Aid in detecting chronic asymptomatic HCV infection | 3. Aid in detecting chronic asymptomatic HCV infection 4. Aid in diagnosis of acute hepatitis C | | | | 5. Aid in diagnosis of chronic hepatitis C Figure 1. Determining performance: new EIA as aid for presumptive diagnosis of chronic hepatitis C 6. Aiding diagnosis of hepatitis C (indiscriminate between acute and chronic) 29 7. Monitoring active HCV infection 29 REFERENCES 30 | 5. Aid in diagnosis of chronic hepatitis C | 5. Aid in diagnosis of chronic hepatitis C Figure 1. Determining performance: new EIA as aid for presumptive diagnosis of chronic hepatitis C 6. Aiding diagnosis of hepatitis C (indiscriminate between acute and chronic) 7. Monitoring active HCV infection REFERENCES. | 3. Aid in detecting chronic asymptomatic HCV infection | 27 | | 5. Aid in diagnosis of chronic hepatitis C Figure 1. Determining performance: new EIA as aid for presumptive diagnosis of chronic hepatitis C 6. Aiding diagnosis of hepatitis C (indiscriminate between acute and chronic) 29 7. Monitoring active HCV infection 29 REFERENCES 30 | 5. Aid in diagnosis of chronic hepatitis C | 5. Aid in diagnosis of chronic hepatitis C Figure 1. Determining performance: new EIA as aid for presumptive diagnosis of chronic hepatitis C 6. Aiding diagnosis of hepatitis C (indiscriminate between acute and chronic) 7. Monitoring active HCV infection REFERENCES. | 4. Aid in diagnosis of acute hepatitis C | 27 | | hepatitis C | hepatitis C | hepatitis C | 5. Aid in diagnosis of chronic hepatitis C | 27 | | 6. Aiding diagnosis of hepatitis C (indiscriminate between acute and chronic) | 6. Aiding diagnosis of hepatitis C (indiscriminate between acute and chronic) | 6. Aiding diagnosis of hepatitis C (indiscriminate between acute and chronic) | | | | 7. Monitoring active HCV infection | 7. Monitoring active HCV infection | 7. Monitoring active HCV infection | | | | REFERENCES | REFERENCES3 | REFERENCES | | | | | | | | | | | | | EFERENCES | 30 | # Premarket Approval Applications (PMAs) for In Vitro Diagnostic Devices (IVDs) Pertaining to Hepatitis C Viruses (HCV): Assays Intended for Diagnosis, Prognosis, or Monitoring of HCV Infection, Hepatitis C, or Other HCV-associated Disease; Draft Guidance for Industry and FDA This document is intended to provide guidance. It represents FDA's current thinking on this topic. It does not create or confer any rights for or on any person and does not operate to bind FDA or the public. An alternative approach may be used if such approach satisfies the requirements of the applicable statute and regulations. ## I. Introduction This guidance document represents current FDA approaches and concerns regarding PMAs for IVDs that pertain to HCV infection. Such IVDs typically employ immunoassay technology for detecting antibodies to HCV (anti-HCV) or hybridization technology for detecting HCV-RNA. The information in this document is based on current science, clinical experience, FDA review experience, and changes resulting from reengineering and the FDA Modernization Act of 1997 (FDAMA 97) (II). As advances are made in science and technology, and as additional changes resulting from implementation of legislation occur, this document will be re-evaluated and revised as appropriate. # A. Purpose This document provides general guidance about information FDA employs to approve class III IVDs intended for use as aids in diagnosis, prognosis, and monitoring of HCV infection or HCV-associated disease, including hepatitis C. This guidance supplements 21 CFR, Parts 800-1299. Please refer to 21 CFR, Part 814 for specific information on PMAs. #### B. Definition This type of device is generically intended for clinical laboratories to use for detecting or quantifying HCV antibodies, antigens, or RNA in clinical specimens. # C. Regulatory jurisdiction This document does not provide guidance for licensing HCV IVDs for screening or managing donors of blood, plasma, tissue, or organs ("safety of blood and blood products"). Licenses pertaining to safety of blood and blood products are obtained from the FDA Center for Biologics Evaluation and Research (CBER), which should be directly contacted for information about preparing applications for licensure. When an HCV IVD is indicated only for safety of blood and blood products, a pre-license application (PLA) should not be submitted to CDRH. HCV IVDs for any other indication, usually diagnosis or monitoring, are regulated by CDRH. When an HCV
IVD is indicated both for safety of blood and blood products and for diagnostic or monitoring indications, a PLA should be submitted to CBER and a PMA should be submitted to CDRH. # II. Background HCVs are one of five virus types (A, B, C, D, and E) that together account for the majority of viral hepatitis cases. Nearly 4 million Americans are infected with HCV. HCV infection is more common in minority populations (3.2% of African-Americans and 2.1% of Mexican-Americans) than in non-Hispanic whites (1.5%) [2,3]. Currently, approximately 30,000 new acute infections are estimated to occur each year. It has been estimated that HCV is responsible for 8,000-10,000 deaths annually and, without effective intervention, that number is postulated to triple during the next 10-20 years. Hepatitis C is now the leading reason for liver transplantation in the USA. HCV is transmitted primarily by the parenteral route. Sources of infection include injection drug use, needle-stick accidents, and transfusions of blood or blood products. Because HCV is not easily cleared by the host's immunologic defenses, a persistent infection develops in as many as 80% of acutely infected individuals. This inability to clear the virus by the infected host leads to the development of chronic liver disease. Lastly, in contrast to hepatitis types A and B, there is no effective vaccine to prevent acquisition of HCV infection. HCV is a positive-strand RNA virus, classified in the family *Flaviviridae*. An infected individual circulates a population of closely related, but heterogeneous, viral genomes (a quasispecies). Comparison of nucleotide sequences representing different HCVs enables classification of HCVs into several genotypes and subtypes [4]. Data on the natural history of hepatitis C are limited, because the onset of infection is often unrecognized and the early course of the disease is indolent in many individuals. The natural history of this disease may differ according to geography, alcohol and other drug use, HCV characteristics (e.g., genotype, load, and quasispecies complexity), host immuno-coinfection with other viruses, and other unexplained factors. Viremia can be detected, as HCV-RNA in serum or plasma, within 1-3 weeks after exposure. Within 50 days (mean; range, 15-150 days), virtually all individuals develop liver cell injury, as manifested by elevated serum concentration of alanine aminotransferase (ALT). The majority of individuals are asymptomatic and anicteric. Only a small population (24-35%) develop acute illness: malaise, weakness, or anorexia; fewer develop jaundice. Fulminant liver failure following HCV infection has been reported, but rarely. Anti-HCV becomes detectable during the course of illness. Anti-HCV can be detected in 50-70% of patients at onset of symptoms and in approximately 90% of patients 3 months after onset of infection depending on the assay. HCV infection appears to be self-limited in only 15-20% of infections. Apparent recovery is characterized by disappearance of HCV-RNA from blood and return of ALT and other "liver enzyme" concentrations to normal levels. Approximately 85% of HCV-infected individuals fail to clear the virus within 6 months and develop chronic infection with persistent, sometimes intermittent, viremia. Most also develop chronic hepatitis, with histopathologic changes in the liver. This capacity to produce chronic hepatitis is one of the most striking features of HCV infection. The majority of individuals with chronic infection have elevated ALT levels that can fluctuate widely. About one-third of chronically infected individuals have ALT levels that are persistently within reference ranges defined by the laboratory that performs the test. Circulating anti-HCV can be detected in 90% of patients after three months [3] and HCV-RNA can be detected after 1-3 weeks in virtually all actively infected individuals. Chronic hepatitis C typically is an insidious process, progressing in most individuals at a slow rate and without symptoms or physical signs during the first two decades after infection. A small proportion of patients (<20%) develop nonspecific symptoms, including mild intermittent fatigue and malaise. Although many HCV-infected individuals with normal ALT levels have been referred to as "healthy" HCV carriers, their liver tissue has had histopathologic evidence of chronic hepatitis. In many patients, symptoms first appear as advanced liver disease develops. The rate of progression is highly variable. Long-term studies suggest that most patients who develop cirrhosis have ALT elevations (that may be intermittent). There is an inconsistent relationship between ALT levels and severity of histopathologic changes. Chronic HCV infection leads to cirrhosis in at least 5-25% [5] of individuals within 2 decades after infection. Occasionally, cirrhosis and end-stage liver disease may develop rapidly, especially among patients with concomitant alcohol ingestion. Chronic HCV infection is also associated with an increased risk of hepatocellular carcinoma (HCC). The prevailing concept is that HCC develops, over the course of approximately 30 years or longer, within a chronic hepatitis-associated background of inflammation, regeneration, and fibrosis. Most cases of HCV-associated HCC occur in the presence of cirrhosis. A variety of laboratory methods are available for diagnosis or management of HCV infection and HCV-associated diseases. Tests that detect anti-HCV include enzyme immunoassays (EIAs). which typically contain several HCV antigens (encoded by the putative core and nonstructural genes and produced via recombinant DNA technology), combined on a solid phase. Strip immunoassays (SIAs) are typically used for supplemental, or second-step, detection of anti-HCV in EIA-positive specimens. While SIAs use the same or similar HCV antigens as EIAs, these antigens are separated on a membrane strip so that antibodies to each can be detected in a manner similar to immunoblotting. In addition, several hybridization-based assays have been developed for detecting HCV-RNA in serum or plasma. These HCV-RNA assays, none of which are currently approved or licensed by FDA, use target amplification methods such as polymerase chain reaction (PCR) or direct hybridization techniques such as branched DNA (bDNA). Liver biopsy can be performed to estimate the extent of hepatic injury, inflammation, or fibrosis. Although some histopathologic findings are characteristic of HCV infection, such as portal lymphoid aggregates, steatosis, and bile duct injury, these alone are not sufficiently specific to establish a diagnosis of hepatitis C. There are no standardized, readily available tests for detecting HCV antigens in liver or blood. # III. Clinical Significance and Utility The submission should include the following information pertaining to the assay: - A. Description of detected analyte, e.g., antibodies, antigen, or nucleic acid. - B. Description of disease or syndromes associated with infection caused by HCV. - C. Description of epidemiology, including prevalence and groups at risk for infection and disease. - D. Discussion of historical and currently accepted methods used to detect HCV and HCV infections, including any approaches for detecting HCV antibodies, antigen, or RNA. *Note: B.-D. may be derived from and referenced to scientific literature.* - E. Comparison between the new assay and any previously licensed or approved devices (i.e., similarities and differences). - F. Description of reference ("gold standard") methods, if available, for detecting evidence of HCV infection in clinical specimens. - G. Discussion of genetic variants of HCV, their proposed clinical significance, and their known or potential impact on the new assay. - H. Discussion of the significance and clinical implications of false-positive and false-negative results. # IV. Device Description For a PMA that pertains to an IVD for HCV infection, key attributes include intended use (antibody, antigen or nucleic acid detected) of the assay, technology for detection or quantitation, types of specimens to be tested, and clinical indications for use. PMAs should include information for adequately characterizing the new assay when it is used with clinical specimens, including the following: # A. Intended Use You should describe the intended use and provide the following information: - 1. Analyte(s) detected, qualitatively or quantitatively. - 2. Types of specimens (matrices) that are intended for testing. If plasma is intended for use, each form (represented by a different anticoagulant) is a separate matrix and is considered distinct from a serum matrix. ## **B.** Contraindications You should state that the use in testing or managing donors of blood, plasma, tissue, or organs is contraindicated (unless licensed by CBER). Please refer to Screening or managing donors of blood, plasma, tissue, or organs (IV.C.2, below). FOR SAFETY REASONS THIS CONTRAINDICATION SHOULD BE DISPLAYED ON PACKAGE LABELS AND THE PACKAGE INSERT IN WAYS TO MINIMIZE THE # POSSIBILITY THAT THE ASSAY COULD BE USED, INADVERTENTLY OR INTENTIONALLY, FOR DONOR INDICATIONS. #### C. Indications for Use You should address the indications for use by considering the population(s) for which the assay is intended and the assay's clinical utility. Examples of specific indications include: # 1. Evidence of HCV infection, where the state of infection or associated disease is not specified. Qualitative assays should demonstrate performance for at least this indication. FDA believes this indication is not appropriate for assays that quantify HCV antigens or RNA. The majority of infected Americans are chronically infected, with or without hepatitis. FDA believes that the predominant use of anti-HCV assays will be for initially identifying these individuals. Studies that determine performance for this indication (see below, V. B and C.1) will be based predominantly on data from
comparative-assay testing of sera for anti-HCV (Table 1) but without necessarily having detailed information about the state of HCV infection or disease in the individuals from whom the sera were collected. It is likely that the majority of these sera will be from chronically infected individuals. Therefore, these sera can initially be used to demonstrate the safety and effectiveness of the major indication for anti-HCV testing, identifying individuals presumed to be chronically infected. The limitation to using this as a sole indication for approval is the lack of demonstrated performance for precise states of HCV infection, particularly acute HCV infection or acute hepatitis C. For the latter, understanding of clinical sensitivity and specificity are crucial for making accurate diagnoses although such infections occur infrequently. When FDA consulted the Microbiology Devices Advisory Panel on hepatitis C, the consensus was that public health would be well served by having assays available with this indication, despite their limitations. According to the CDC, "If a similar indication were the only one to be proposed for an HCV-RNA assay, this indication would be modified to the following or to a similar text: '[Assay name] is indicated for patients with liver disease who are suspected to have active HCV replication. Detection of HCV-RNA is evidence of active HCV infection but does not distinguish between acute and chronic states of infection. A negative result does not exclude active HCV replication. It is not known if performance is affected by the state (acute or chronic) of infection. It is not known if performance is affected by the presence or absence of disease. Detection of HCV-RNA by itself does not indicate the presence of liver disease. Performance has not been demonstrated for monitoring HCV-infected patients." At the time this document was prepared, it was appropriate to indicate the use of such an assay for individuals who had antibody evidence of HCV infection [3] [Please note that positive results via anti-HCV EIA should be considered as presumptive evidence of antibodies to HCV unless supplemented with results from an anti-HCV SIA.] It was not considered appropriate to indicate the use of such a test for individuals without evidence of liver disease. If a manufacturer wants to pursue such an indication, they should contact FDA for further discussion and advice. Similar concerns apply to assays for the detection of HCV antigens. 2. Screening or managing donors of blood, plasma, tissue, or organs. Assays intended for this use require a license from CBER. Sponsors planning to develop these types of assays should directly contact the Division of Emerging Transfusion Transmitted Diseases, CBER for specific guidance. 3. Aid in detecting asymptomatic acute infection with HCV (e.g., asymptomatic following exposure). Please note that "infection" refers to active HCV replication but not necessarily to HCV-associated disease. 4. Aid in detecting asymptomatic chronic HCV infection. FDA believes that this is likely to become an indication proposed by many sponsors, given the Department of Health and Human Services (DHHS) recommendations for testing at-risk Americans [3]. - 5. Aid in diagnosis of acute hepatitis C (acute infection with symptoms or biochemical evidence of hepatitis) - 6. Aid in diagnosis of chronic hepatitis C - 7. Aid in diagnosis of hepatitis C (indiscriminate between acute and chronic) As in Indication 1, sponsors proposing this indication should study patients with hepatitis C in whom chronic infection would predominate. The intended use statement in the package insert would therefore contain a warning such as this: "A positive result does not discriminate between acute or chronic hepatitis C. A negative result does not rule out acute infection. Performance has not been established for specifically aiding diagnosis of acute or chronic hepatitis C, or for evidence of recovery from HCV infection." - 8. Monitoring active HCV infection includes at least several important indications: - a. Prognosis of chronic HCV infection without antiviral therapy - b. Predicting response of chronic HCV infection to antiviral therapy - c. Prognosis of acute HCV infection - d. Monitoring response of chronic HCV infection to antiviral therapy - e. Prognosis of chronic HCV infection after antiviral therapy is completed or discontinued. Note: Current peer-reviewed scientific literature primarily discusses indications 8.c. and 8.d. This list could be modified if treatment becomes available for acute infection. These indications are almost exclusively for assays that qualitatively or quantitatively detect HCV-RNA (there are reports that anti-HCV assays can be used to monitor recovery from HCV infection, with or without antiviral therapy; this indication has not been addressed in this document). # 9. Novel indications for use Novel indications for use can be considered or assessed, in which case the manufacturer should recognize current standards of diagnosis and care, as expressed in the peer-reviewed scientific literature, and communicate with FDA as early as possible before designing the studies. # D. Device Methodology The submission should include thorough explanations of all aspects of the test method, including a complete, detailed description of the following items, as appropriate: - 1. Principles, with a brief history of the specific technology upon which the device is based. - 2. Specimen processing. - 3. Controls and calibrators which are provided and their function(s), i.e., what are they controlling and how? Controls and calibrators should be from separate lots of material. Whether provided with the assay or recommended via package insert instructions, the manufacturer should specify at least one negative control and one positive control that duplicate or simulate clinical specimen types (matrices) that would be tested, i.e., controls for the complete assay. When controls are not provided, package insert recommendations should be supported by data to ensure that assay users will be consistently able to produce, store, and process the control materials to yield reproducibly valid results. - a. Qualitative assays should minimally have at least two types of controls, negative and a "low" positive, yielding a value close to the assay cutoff. - b. Quantitative assays should have at least two controls, negative and positive, at appropriate points within the clinically defined range of the assay. You should also include the upper positive range after which a 'prozone' effect may cause a false negative result. - c. Calibrators for quantifying HCV-RNA should be characterized in terms of reference material, e.g., World Health Organization (WHO) Biological Standard or, if none has been established, quantified by one or more independent methods. Units for HCV-RNA calibrators should be appropriately designated. The designations, "copies" or "genomes" should not be used unless the number of molecules has been determined. In many cases, and until there are well accepted standard reference materials for HCV-RNA, it is more appropriate to create an arbitrary, but technologically accurate designation (e.g., "ABC Co. HCV-RNA signal-generating units") with an explanation of its microbiologic or clinical relevance. - d. Matrices for controls and specimens should be identical. If an alternative control matrix is used, a rationale and appropriate supporting information should be provided. - e. Controls for inhibition (internal or external, when appropriate). - 4. Other reagents provided in the kit or recommended for use, and their functions in the assay. - 5. Cutoff value(s) or reporting threshold, for qualitative assays. This is usually determined with an equivocal range around the cutoff. - 6. Limits of detection and limit of quantitation, for quantitative assays. - 7. Safety aspects for performing the assay. - 8. Software elements and dedicated instrumentation, including: - a. algorithms used to calculate results in either dedicated or non-dedicated instruments - b. mathematical curve-fitting methods(s) used to calculate results via instrument-related software - 9. Materials required but not provided. # E. Specimen collection, transport, and processing materials (that are included in the kit, specified, or recommended) You should specify details pertaining to optimal and unacceptable procedures for specimens that would be tested with the IVD: - 1. Procedures to assure that specimens are appropriately collected, transported, and processed. - 2. Types and recommended volumes of all appropriate specimens for testing. Discuss the effects of testing inadequate or inappropriate specimen types and applicable volumes of all appropriate specimens for testing. Additionally discuss the effects of testing inadequate or inappropriate specimens. - 3. Appropriate processing and transport conditions, (e.g., time and temperature), for each type of specimen and the effect(s) of inappropriate processing and transport. - 4. Recommended storage time and temperature and the effect(s) of inappropriate storage time and temperature. ## V. Performance Characteristics FDA requests certain types and amounts of data from preclinical (analytical) and clinical studies in premarket approval applications. The data submitted should reflect the intended use, indications for use, and the technological characteristics of the IVD. These data should be analyzed by using appropriate statistical methods. The data and analyses should demonstrate the assay's safety and effectiveness. Complete protocols, including all laboratory procedures, should be provided for all studies. All testing to establish performance characteristics should be performed by using the "finished product" design (i.e., the marketed version and format), according to instructions in proposed product labeling. Laboratory data ("line data") with quality control results should be submitted in
print (hard copy). Submission of such data in electronic form is encouraged. Data should be presented with analyses and conclusions. Explanations should be included for unexpected results and any deviations from protocols, such as additional testing. In addition, the use of tables and graphs (e.g., receiver-operator curves (ROC), scatter plots, and histograms) are encouraged for summarizing or clarifying analyses and conclusions. Any clear format is acceptable for sections of the PMA that pertain to performance characteristics. FDA suggests you provide the following to facilitate our review: - Include a reference volume that contains a detailed table of contents for the entire PMA, a short "executive" summary of the PMA, a copy of the proposed package insert and other labeling, and, if possible, an index for the PMA (i.e., extensive cross-referencing is very helpful). - Use the format found in most scientific manuscripts, i.e., Abstract, Introduction, Materials and Methods (study protocols, with package inserts for comparative assays in appendices), Results and Conclusions (data and analyses for all studies, with line data in appendices), Discussion (optional), and References. - Insert each table and graph within the appropriate text section, rather than placing them at the end of text. All assays should have at least one cutoff to distinguish between types of results. It may be appropriate to have different cutoffs for different indications for use. During preclinical studies, tentative cutoff(s) should be set by using any of several valid approaches. Examples include: - a number representing the mean value plus several standard deviations for specimens known not to contain the detected or measured analyte - a number between values for specimens known to contain the analyte and values for analyte-negative specimens - ROC analysis Clinical studies should validate the cutoff(s) for each indication for use by testing well-characterized specimens or specimens from well-characterized individuals. FDA recognizes that it may be necessary to make minor cutoff changes during or after clinical studies. Any cutoff changes should be justified (from analysis and post-change re-analysis of data) and may need to be tested in subsequent clinical or reproducibility studies. # A. Preclinical (Analytical) Laboratory Studies Testing should be done in-house or at a designated laboratory facility as part of assay development phases. The following types of studies should be performed to determine operational parameters and assess performance: ## 1. Setting cutoff(s) or calibration curve a. For any assay: FDA recommends the following: - (i) Evaluate specimens containing analyte (e.g., from patients with hepatitis C or other manifestations of HCV infection) and specimens known or thought not to contain analyte (e.g., from asymptomatic, healthy individuals or from patients with other forms of hepatitis). - (ii) Describe the rationale for setting assay cutoff(s). Furnish descriptive information and data to show how each cutoff distinguishes between "positive" and "negative" results. # b. For a qualitative assay: FDA recommends that the manufacturer describe the basis for and then establish a least one equivocal (gray) zone; different equivocal zones might be appropriate for different indications for use. Traditional microtiter-plate EIAs for anti-HCV essentially designate all values above a cutoff as equivocal; i.e., specimens that yield "initial" positive results are retested in duplicate before reportable results are interpreted. At this time, ALL ASSAYS INDICATED FOR SAFETY OF BLOOD OR BLOOD PRODUCTS SHOULD BE DESIGNED TO ADHERE TO SUCH A REPEAT-TESTING ALGORITHM. Manufacturers should contact CBER for specific and updated recommendations. While there is no requirement for such an algorithm for an assay used in diagnostic or monitoring indications, if you propose a different type of testing and interpretation algorithm, it should be extensively supported by data and analysis. # c. For a quantitative or semi-quantitative assay: You should describe the rationale for determining lower and upper limits of quantitation (dynamic range) which define their reportable range. # 2. Analytical sensitivity Anti-HCV assays should achieve analytical sensitivity equal to or higher than that of the latest "version" of EIAs licensed for use on donors of blood or blood products (during early 1999, such assays represented a third "version"). If such sensitivity cannot be achieved or if it is not appropriate for certain indications for use, package labeling for the assay should clearly indicate the lower sensitivity. Analytical sensitivity should be determined for: - a. Each specimen matrix and any diluent in the labeling. - b. Strains representing diversity (e.g., geographic, genotypic [8], or phenotypic drug resistance) among HCVs, including all variants you claim. Such data should include results of searching Genbank (National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov) or other comprehensive databases for identity between sequences represented by the assay's analyte-specific reagents and strains or genotypes claimed. ASSAYS THAT HAVE NOT BEEN LICENSED BY CBER FOR BLOOD-PRODUCT INDICATIONS SHOULD BE CLEARLY LABELED AS CONTRAINDICATED FOR SUCH INDICATIONS. FOR EXAMPLE, THE OUTSIDE OF THE KIT SHOULD INDICATE THIS CONTRAINDICATION IN BOLD LETTERS THAT CONTRAST WITH OTHER TEXT (Please see above, IV.B). Several possible approaches to determining analytical sensitivity include - end-point dilution - earliest detectable reactivity in groups of serially collected samples ("seroconversion panels"), where each group represents an individual - comparison to (standard) reference materials - comparing results for analyte-positive specimen with analyte concentration determined by one or more independent methods - for assays that detect HCV antigen or RNA, establishing limits of detection (LOD) or endpoints by determining the minimum detectable number of analyte molecules and, if possible, a minimum number of 50% chimpanzee (or, if available, cell-culture) infectious doses of HCV # 3. Limits of Quantitation (LOQ) for quantitative and semi-quantitative assays - a. Reportable range should be established by determining lower limit (analytical cutoff) and upper limit for quantifying the concentration of HCV antigen or RNA or for semi-quantitation of anti-HCV. - b. Arithmetically or geometrically linear performance and nonlinear performance should be determined. (Data points should be presented with an expression of their variability, such as 95% confidence intervals). - c. Quantitative accuracy and precision throughout the reportable range should be determined. - d. Approximate interpretations should be established for results that represent different concentrations of analyte (analogous to setting cutoffs: please refer to section IV.A.1, above). # 4. Specificity for detecting HCV-RNA Specificity for detecting HCV-RNA should be determined by the following: - a. Search Genbank or other comprehensive nucleic-acid databases for similarity between sequences of the assay's analyte-specific reagents and those of other entities. - b. Perform nucleic-acid detection studies on well-characterized isolates and strains of microorganisms, e.g., American Type Culture Collection (ATCC) or WHO reference strains: - (i) These microorganisms should represent - · closely "related" flaviviruses, if any are identified - unrelated genera that cause hepatitis and other HCV-associated syndromes - other flora (pathogenic or commensal) found in assayed matrices - (ii) The PMA should contain - lists of genus, species, applicable reference numbers, sources, and tested number for each microorganism - documentation of inocula and of methods for identifying, characterizing, and quantifying these microorganisms - (iii) Cross-reactivity studies should be performed by using DNA or RNA representing a large excess of these microorganisms, i.e., the concentration of tested nucleic acid should be at least 1000-fold greater than the limit of detection of HCV-RNA. Use caution when concentrations of different nucleic acids are expressed in terms of the same units. Unit names should be interchanged only when the determining method(s) are recognized as equivalent. # 5. Interference studies Interference studies should determine if assay results are affected by potentially interfering substances (or "inhibitors") in proposed specimen types, matrices, or processing reagents. Examples of substances that may interfere with detection of anti-HCV, HCV antigen, or RNA include: - a. Endogenous substances likely to be present in specimens (e.g., triglycerides, bilirubin, hemoglobin, proteins, therapeutic drugs, or illegal drugs). For studies, the source of such endogenous substances should be actual human specimens (that will contain the range of metabolic permutations of each substance) rather than purified products. - b. Exogenous substances (e.g., glove powder or the effect of different drugs), that may have been introduced to individual specimens or an archived collection. - c. Possible cross-reactivity with other microorganisms (not uncommon in matrix tested), which should be studied by using high concentrations of such microorganisms. Please refer to section IV.A.4.b.(iii), immediately above. - 6. Verification of methods for decontamination and specimen inactivation If the procedural process of the device includes reagents such as uracil-N-glycosylase, formamide, psoralen derivatives, and/or restriction enzymes; or recommends procedures such as irradiation to inactivate contaminating nucleic acids or inactivate HCV, the following investigation should be performed: - a. Performance of the reagent or procedure - b. Challenge of decontamination procedures with known contaminants - 7. Validation of recommendations for specimen collection, transport, and
storage Real-time stability studies should determine optimal and permissible conditions for each proposed matrix (and each claimed anticoagulant, if plasma is used). These studies should evaluate effects of specimen collection, transport, and storage effects on assay results, particularly for inhibition of HCV-RNA detection. # 8. Infectious agents in reagents derived from humans Include data from testing the human-derived reagents using FDA approved methods, to demonstrate that there are no infectious agents such as human immunodeficiency virus and hepatitis B virus (HBV) present. # 9. Validation of reagent stability Real-time studies should be used to determine expiration dating. (If necessary, a stability protocol may be discussed with the FDA before you submit the PMA so that appropriate real time testing for expiration dating may be initiated as early as possible.) Studies should also evaluate performance of indicators, if any are provided, for evidence of improper storage. # 10. Reproducibility (precision) Any statistically valid approach can be used to determine how well the assay yields the same result on repeated determinations. Typically, each specimen is represented in multiple aliquots (e.g., triplicate) and studies are performed on multiple assay lots at multiple sites, via multiple runs on multiple days. Other general recommendations include those in NCCLS Guideline EP5-A and in the FDA Guidance Document, "Review Criteria for IVDs for Detection of IgM Antibodies to Viral Agents," August 1, 1992, http://www.fda.gov/cdrh/ode/527.pdf. In particular, FDA recommends the following studies: - a. Reproducibility should be studied for at least three lots of the assay. - b. These studies should be performed in at least three sites, one of which may be in-house, for each type of laboratory setting claimed. For example, if a single-unit, qualitative anti-HCV assay is claimed for use in clinical laboratories and point-of-care settings, its reproducibility should be determined in both environments. - c. If the assay is automated, studies should be performed with at least three unique (i.e., different serial numbers) instruments. - d. A different group, or panel, of specimens should be studied for each type of specimen matrix to be used with the assay. - e. A different group of specimens should be studied to represent (in the form of antibody, antigen, or RNA) each HCV genotype or variant that the assay is intended to detect. - f. Analyte concentrations in specimens should represent a clinically relevant range, i.e., concentrations should be those encountered in clinical practice. All such specimens should be actual clinical specimens or simulated specimens that are created by diluting analyte from a human specimen into analyte-negative human matrix. It is especially important to include at least two specimens that will yield close-to-cutoff values, i.e., both above (analyte present at very low concentration) and below the cutoff. For qualitative assays, it is often useful to include specimens that yield the cutoff value, 1.2 x the cutoff value, and 0.8 x the cutoff value. There should be a sufficient number of specimens to determine validity of the assay's equivocal zone(s). For quantitative assays, at least two additional specimens should be studied. These specimens should represent upper and lower thresholds for clinical decisions that pertain to each indication for use. One specimen should contain a high concentration of analyte, where "high" refers to the upper limit of clinical relevance for a particular indication or to the upper limit of the analyticallydetermined dynamic range, whichever is lower. The other specimen should contain a low concentration of analyte, where "low" refers to the lower limit of clinical relevance for that indication or to the lower limit of the analyticallydetermined dynamic range, whichever is higher. To define these thresholds, additional device testing should be performed along with adjunct testing to pursue HCV levels in, for instance, patient monitoring. You should track results with this device along with additional diagnostic tools, e.g., serial ALT levels. liver biopsy. That way the values for the device in question could be established unless the published literature can already corroborate an initial hypothesis. The NIH consensus statement, Management of Hepatitis C, March 24-26, 1997, http://odp.od.nih.gov/consensus/cons/105/105 statement.htm, on Hepatitis C management is a valuable reference tool {2}. - g. Specimens for these studies should be masked, i.e., personnel who perform and interpret the data should not know the presence or amount of analyte in the specimens. - h. Each run should be performed according to the assay's instructions for use in the clinical protocol, including provisions for quality control and calibration; these instructions should be identical to those in a draft package insert. Failed runs should be documented in the PMA. - i. Data analysis and presentation for each specimen's results should include determination of intra-assay, inter-assay, inter-laboratory, and total variability. Analysis of Variance (ANOVA) is an example of an appropriate statistical technique for data analysis. If you use ANOVA you should determine and report the sums of variance, standard deviation of variance, and 95% confidence intervals. - j. Data presentation for qualitative assays should also include, for each specimen, the percent of study results that were identical to expected results. Calculation of variability, which is typically expressed as percent coefficient of variation (%CV) for numerical values of assay results including 95% confidence intervals (95% CI) should also be included. # 11. Additional studies FDA recommends additional studies to determine effects of: - a. prozone (high dose hook) - b. transport or other environmental stress on kits # 12. Instrument performance FDA recommends you provide the following: - a. Rationale for instrument and software algorithms - b. Studies demonstrating the absence of sample or reagent carryover. - c. Description, explanation, and validation supporting the effectiveness of error messages. # B. Design and Protocols for Clinical Studies: General Recommendations Appropriate clinical studies should be performed to determine if the assay is safe and effective for each claimed indication for use. At a minimum, you should perform studies to demonstrate safety and effectiveness for Indication 1 (Evidence of HCV infection, where the state of HCV infection or associated disease is not specified). Please see sections on indications for use in IV.C above and V.C below). To optimize clinical study design before studies are begun, manufacturers are encouraged to contact FDA in the manner they believe will be most helpful for expediting product development. A number of options exist. For example, per Sections 513(a)(3)(D) and 520(g)(7) of FDAMA 97 [1], manufacturers may request a formal protocol review that seeks agreement on particular items. Alternatively, protocols may be submitted for general review and comment. The PMA should include copies of all protocols. Each protocol should describe design and procedures including: # 1. Intended use, indications for use, and indicated populations The new assay should be studied to determine if the manufacturer's claims are supported. # 2. Specification for the number of individuals or specimens using statistically based criteria that will be studied for each claimed indication. These criteria should predict how the studies will demonstrate the safety and effectiveness of the device, and be accompanied by a valid analytic plan. ## 3. Study sites Clinical studies should be performed at three or more laboratory sites; at least two should be independent (i.e., not affiliated with the manufacturer). The number of sites should be addressed by considering variables such as types of population for which the assay is intended, complexity of assay performance, familiarity with assay design, and interpretation of results. All laboratory sites should be representative of the settings in which the assays will be performed. Each study laboratory should be identified by institutional name and address and by the name, title, and phone number of the responsible investigator(s). The protocol should be identical for each type of laboratory in which the assay will be studied. Any site-to-site variables should be documented and explained. Investigators should understand that strict adherence to the protocol is critical. Any deviations from protocol should be documented in the PMA and support should be provided including data from portions of the study in which protocol deviations were made. # 4. Types of studies and specimen collections A prospective study, following a design to determine performance for a particular indication for use in a particular population, is the optimal type of study. If the specimens have been properly maintained (see below, IV.B.7), and no biases were introduced by selecting certain specimens, it does not matter that the study was performed in the past. Prospective collections of specimens representing routine submissions to a clinical laboratory are useful but relatively undefined. The manufacturer should recognize and indicate, in the PMA, the uncertainties and biases of such a collection (if the assay is approved, the package insert should also indicate these biases). If such specimens have been submitted for detecting evidence of infection with one of the hepatitis viruses, one can assume that the physician is suspecting hepatitis infection. Therefore, each patient would be considered part of an at-risk population. In addition, such specimens represent, via sampling, the range of received specimens for the type of laboratory that is performing the study; the protocol and PMA should describe the population(s) that the
laboratory serves. However, without additional information about an individual, it would not be known if testing was ordered for - aiding diagnosis of an acute, chronic, or past process (and magnitude of the physician's suspicion for that diagnosis); - monitoring recognized disease, with or without therapy; or - pre- or post-vaccination assessment. Moreover, it would not be known if a tested individual was ill. While the information obtained from such a collection cannot be used for calculating a clinical performance parameter, such as clinical sensitivity, clinical specificity, or predictive values, it may be useful for determining one type of "Expected Values," (e.g., high prevalence). There may be biases inherent in specimens, archived or collected during studies, that represent selected cases of hepatitis C or other diseases. Such cases are unlikely to represent the range of specimens submitted to a laboratory, that, in turn, often represent patients with atypical laboratory results. Manufacturers should determine if, and document that, "seroconversion panels" are serially collected specimens from a single individual (and not from multiple individuals or artificial specimens created by dilution). # 5. Laboratory results as inclusion, exclusion, or characterizing criteria - a. Comparative assays for evidence or characterization of HCV infection - (1) FDA-licensed or -approved assays should be used for detecting antibody evidence of HCV infection. These assays should be selected for optimal performance for indications being studied. (The latest "version" will usually represent the highest available analytical sensitivity and specificity.) These assays should be performed and interpreted according to package insert instructions; any off-label deviations should be justified by presenting independent supporting data. Examples of such off-label deviations are "initial" (single-aliquot) testing only for a currently licensed anti-HCV EIA that specifies "repeat" triple-aliquot testing or interpreting "indeterminate" SIA results as evidence of anti-HCV. Typical interpretation of comparative-assay results for studies is shown in Table 1. Table 1. Comparative-assay results^a as evidence of HCV infection, per package insert instructions: interpretation for categorizing specimens or individuals in studies | 1 st step (EIA) result | 2 nd step (SIA) result b, d | Interpretation → Category | | |---|---|---|--| | Negative (initial or repeat) | Not done | | | | Positive (repeatedly reactive via testing of 3 aliquots) | Negative or Indeterminate | Not HCV-infected | | | Positive (repeatedly reactive) | Positive | HCV infection,
state or associated disease not
determined | | | Study specimen: Negative AND Later specimen: Positive (repeatedly reactive) c | Study specimen: Not done AND Later specimen: Positive c | Anti-HCV seroconversion | | | Study specimen: Positive AND Later specimen: Positive (Positive ≡ repeatedly reactive) c | Study specimen: Negative or Indeterminate d AND Later specimen: Positive c | (refer to 6.b.[2]) | | | Initially reactive (testing only of single aliquot) | Not done, Negative,
Indeterminate, or Positive | None (incomplete testing) → exclude specimen ^d | | | Positive (repeatedly reactive) | Not done | | | ^a Historical or study-generated data, from EIA(s) and SIA(s) that should be specified in protocols; analyzed results should be those from first-time testing; i.e., specimens should not be retested to "resolve discrepant" new-assay results. ^b 2nd step – if assays are not FDA-approved, protocol design and data should be provided to justify use in studies as a criterion for evidence of HCV infection; for recommendations on HCV-RNA assays, please refer to section V.B.6.b.(1) below. ^c Later specimen should be collected within 3 months of study-specimen. Detection of HCV-RNA in study specimen would be independent evidence of infection and establish that the infection was active when the specimen collected; please refer to section V.B.6.b.(1) on detection of HCV-RNA. ^d Alternative (off-label) testing algorithms can be used if protocol design and data support use. Although FDA recognizes that some institutions recognize lesser criteria for high risk populations, they recommend at least two separately detected pieces of evidence (among results for repeated-EIA, SIA, or HCV-RNA) because of the high frequency of false-positive EIA results among low-risk individuals {2,3}. ⁽²⁾ Non-approved assays should be avoided, if approved or licensed assays are available, as is the case with EIAs and SIAs for anti-HCV. However, certain indications should be supported by HCV-RNA testing, for which no assays are currently approved; please refer to the section V.B.6.b.(1) below, on detection of HCV-RNA as a marker of active infection (which is an extrapolated section of the 1997 NIH consensus statement on Management of Hepatitis C). b. Other appropriate laboratory findings should be documented from line data provided for each individual or specimen. Results of serologic, nucleic-acid, hematologic, or biochemical testing usually provide information for additional characterization or categorization of individuals or specimens. For example, analysis of study data could be aided by evidence of infection with other viruses that could modulate replication of or immune responses to HCV. Individuals infected with other hepatitis viruses, without evidence of HCV, constitute subgroups for implying or determining clinical specificity (for examples, see Table 3A). Protocols should include types of specimens, assays, interpretations, and categories in a manner similar to those in Table 3. These data would not, in general, be a basis for excluding an individual or specimen. # 6. Inclusion and exclusion criteria for individuals You should supply information from studies to support all indications for use except for, possibly, the indication "evidence of HCV infection, where the state of infection or associated disease is not specified." FDA also recommends supplying information about the individuals in the studies except, for the indication "evidence of HCV infection, state of infection or associated disease not specified" (Indication 1, in sections IV.C.1 above and V.C.1 below). Protocols should describe studies of well-characterized individuals, to determine performance for the claimed indications for use. Identify each group of individuals that will be studied, especially if they are represented by an archive of frozen specimens. Protocols should indicate how individuals have been or will be characterized (i.e., the criteria for categorizing or excluding them) and how these criteria will be documented. For documenting the criteria, FDA recommends case report forms or an electronic database (arranged like case report forms) that will be the same for, and completed at, each clinical-study site; blank "forms" should be attached to protocols. A physician's diagnosis, without the objective supporting data, is not an acceptable criterion for categorizing patients. The manufacturer should develop study algorithms that outline how individuals and results will be categorized to enable appropriate analysis of data. Figure 1 is an example of a recommended algorithm for studying the performance of a new EIA for anti-HCV, indicated for diagnosis of chronic hepatitis C (Indication 6, in sections IV.B.6 above and V.C.6 below that pertain to Indications for Use). # a. Hepatitis For including or excluding individuals from studies of performance for indications that pertain to diagnosis of acute or chronic hepatitis C, you should select combinations of criteria for hepatitis among several recognized criteria. FDA recommends this because individual criteria are not sufficiently sensitive or specific, or may not be available, to be used as a recommended or sole criterion. The recommended criteria are: - Symptoms - Physical signs - Biochemical evidence, such as elevated serum concentrations of ALT or other markers of hepatocellular damage. You should define "elevated" in terms of the reference range at the laboratories where the assay is performed. - Histopathologic evidence is recommended. It should be presented in the line data by using current standard terminology; the Knodell scoring system, especially if changes in histopathologic evidence will be used as a criterion of change in disease for a monitoring indication (please see V.C.8.) # b. Active HCV infection # (1) Detection of HCV-RNA The presence of HCV-RNA in blood indicates that HCV is replicating. At present, HCV-RNA is the only readily detectable marker of active infection. While there are not any approved HCV-RNA assays and high variability has been recognized as a problem among current assays (home-brew and commercial) and laboratories [6], FDA believes that it is appropriate to consider preclinical and limited clinical data for supporting use of HCV-RNA detection as a criterion of active infection. Such data [7] should represent studies of: - Analytical sensitivity and specificity, including cross-genotype reactivity, e.g., genetic heterogeneity and HCV sequence divergence. Analytical sensitivity should be characterized in terms of reference material, quantified by one or more independent methods, that can be interpreted by and is available to people outside of the laboratories that perform the HCV-RNA assays. - Dynamic range, for quantitative assays - · Reproducibility - Temporal patterns of detectability (qualitative assay) or HCV-RNA concentrations in individuals with or without FDA-approved antiviral therapy (i.e., to determine how the assay performs in serially-collected specimens that represent, respectively, situations in which HCV-RNA concentrations
might or might not change). One source of such data can be peer-reviewed articles in scientific journals. For testing patient specimens during clinical studies, FDA recommends the use of the same assay at all study laboratories or at a single independent laboratory. If more than one assay is used, at different laboratories or because historical data is cited, the PMA should contain sufficient information to enable interpretation of results from each HCV-RNA assay (e.g., data from well characterized, quantified reference materials). If considering results of an unapproved HCV-RNA as a criterion for an active infection, FDA would not necessarily consider any of their indications for use as part of the PMA process. # (2) Acute infection Acute infection should be demonstrated by testing multiple specimens from the same individual. Comparative assays should not detect anti-HCV in earlier specimens and should detect anti-HCV in later specimens. For determining performance for indications that pertain to acute HCV infection (Indications 3 and 5: IV.C above and V.C below), FDA recommends testing of at least four specimens (two successive specimens yielding negative results via comparative anti-HCV testing, followed by two successive specimens yielding positive results). With current assays, the mean time from exposure to seroconversion is 8-9 weeks [3]. If only one anti-HCV-negative specimen is available from certain individuals, other temporal characteristics could establish that the individual was acutely infected at the time subsequent specimens were collected. For determining performance of new assays that are assumed to be more sensitive than the older assays, FDA recommends testing serially collected blood for HCV-RNA to demonstrate the onset of HCV replication. # (3) Chronic infection Chronic infection should be demonstrated by testing two or more specimens collected from the same individual during an interval of at least 6 months. Approved comparative testing should be used to detect anti-HCV or HCV-RNA after this 6-month interval. # (4) Genotype Genotype is an important but controversial, concern because some investigators have presented evidence that certain HCV genotypes and subtypes are associated with more severe disease and with decreased response to antivirals. (Serotypes, as classically defined by antigenic cross-reactivity and protection within a serotype, have not yet been identified for HCV. Based on sequence diversity alone, it is quite possible that the HCVs represent two or more distinct viral species.) At the time this document was prepared, there were no approved methods for determining genotype or subtype. However, it was generally recognized that "the most accurate procedure was to determine nucleotide sequence of a genome region that encodes protein (usually not including the hypervariable region of E2) and then identify subtype by phylogenetic analysis, using a database of reference nucleotide sequences. The inaccuracy of other commercial and in-house methods was such that subtyping was not recognized as accurate. In any case, a submission should contain the details of genotyping procedure(s) and the data to support interpretation of results." There has also been controversy about consensus definitions for and the number of recognized HCV genotypes. FDA believes that PMAs should include as much information as possible about infecting genotypes because recognized genotype-dependent differences in performance of non-approved assays for anti-HCV or HCV-RNA have led to false results or quantitative errors that are likely to have adverse effect on patient management. You should consider section V.6.b.(1) and in reference [4] when developing information about infecting HCV genotypes among certain patients or specimens. c. Inactive HCV infection Inactive HCV infection should be demonstrated by comparative-assay testing of three or more specimens from each individual where HCV-RNA is not detectable in all tested specimens for ≥ 12 months. (In addition, the following individual should not have evidence of hepatitis (V.B.6.a.) during the sampled interval.) - (1) In a group not treated with anti-HCV therapy - (2) Following treatment, in a group having "sustained virologic and biochemical responses" (i.e., undetectable HCV viremia and within-reference-range ALT concentrations) during an interval of at least 1 year. - d. Different types of populations should be studied for determining specificity and for estimating prevalence ("Expected Values") as detected by the assay: - (1) Patients who have hepatitis or other HCV-associated syndromes (e.g., porphyria cutanea tarda), without evidence of HCV infection are appropriate for studying clinical specificity (for examples, see Table 3 and Figure 1). - (2) Healthy individuals are appropriate for studying specificity of tests with indications that pertain to asymptomatic HCV infection (Indications 3 and 4: IV.C above and V.C below) and for determining prevalence. Although blood donors are often used for such studies, it is important to recognize that they represent selected populations. Even first-time donors are screened via questionnaire before specimens are collected. Repeat donors have been screened via laboratory testing during previous donations. The best estimates of asymptomatic specificity and prevalence are determined from healthy members of populations that were demographically similar to those being studied for the indications for use. To interpret a prevalence study for an anti-HCV assay, results should be presented as % assay-positive (% -assay negative would be an estimate of minimum specificity among asymptomatic individuals). Comparative testing results should not be used to interpret the specificity of assay results, unless comparative testing has been applied to statistically appropriate subsets of specimens that yielded positive and negative results with the assay. # 7. Inclusion and exclusion criteria for specimens Inclusion and exclusion criteria for specimens should include conditions for collection, handling, and storage. Protocols should indicate how these criteria will be met and documented. An explanation should be provided for each group of specimens that will be studied, especially if they represent an archive of frozen specimens or a group of individuals for whom individual clinical characteristics will not be provided. Specimen archives, including panels from commercial suppliers, should be described in terms of criteria and introduced biases for inclusion in the archive, number of individuals represented (e.g., each "seroconversion panel" should represent only one individual), criteria, and introduced biases for selecting certain specimens to study, and how the archive has been stored (including criteria for and documentation of monitoring during storage). # 8. Laboratory procedures # a. Specimens should be masked Personnel who perform the studies and interpret the data should not know any characteristics about the specimens, including results from comparative or other assays. # b. Quality control Quality control procedures should be performed for each run, according to the assay's instructions for use in the clinical study protocol. These instructions should be identical to those in a draft package insert. In the PMA, line data should include lot number and quality control results for each run during clinical studies, including documentation of failed runs. # 9. Data analysis # a. Analysis should be masked Personnel who assign individuals or specimens into categories should not know assay results. ## b. Performance characteristics You should provide a statistically based value for variability among calculated performance estimates. For example, you should include 95% confidence intervals for sensitivity and specificity. - (1) For characteristics that pertain to qualitative diagnostic indications, performance should be expressed in terms of % assay results that are "correct," where correct refers to the category to which individuals or specimens have been assigned, according to criteria in the clinical protocol. For examples, please refer to Table 2 and Figure 1. - (2) It is appropriate to describe a particular performance characteristic for an unmatched population (e.g., "specificity among first-time blood donors" or "clinical specificity among patients with acute hepatitis A"). Similarly, it might be difficult to determine the state of infection (acute versus chronic) in a population of patients with hepatitis but who are not HCV-infected. It would be appropriate, for example, to calculate "clinical specificity among patients with acute or chronic hepatitis" and "clinical sensitivity among patients with chronic hepatitis C." Such findings should be presented separately because they represent different populations. Performance for diagnostic indications with qualitative assays should also include validation of cutoff(s). You should present data to demonstrate that each cutoff is appropriate, as determined from clinical studies of well-characterized individuals or specimens. Such presentation typically includes a graphic representation of data, in such forms as a ROC curve or a histogram to challenge the assigned cutoff or data from a specific population(s). It is not appropriate to verify a cutoff by using results from two different populations, (e.g., positive results primarily from patients with hepatitis C and negative results primarily from blood donors). For characteristics that pertain to temporally variable data, such as seroconversion during acute HCV infection (diagnosis) or HCV-RNA concentrations at any time during infection (monitoring), the manufacturer should analyze and present data by using time as an independent variable. For example, results for a qualitative assay for anti-HCV could be presented in tabular form as % assay-positive (with 95% confidence intervals) during intervals after exposure or before
hepatitis. Results for a quantified HCV-RNA assay could be presented in graphic form, as concentration versus time, with error bars for each data point. # c. Discrepancy resolution Studies will not have discrepant results because each individual or specimen should be categorized according to study criteria that may include comparative-assay and other laboratory results. If the assay being studied is an EIA or SIA for anti-HCV, data from additional testing with comparative assays may be useful for a better understanding of the nature of false positive reactivity. It is not, however, appropriate to resolve certain false positive results to a true positive interpretation on the basis of additional testing data, unless study protocols included plans for additional testing of a statistically determined subset of specimens that initially yielded a true negative interpretation. If so, results that are assay negative but additional testing positive, should be interpreted as false negative. All results positive by additional testing should be categorized as "HCV infection, state of infection or associated disease not determined," regardless of -assay results. # C. Design and Protocols: Additional Recommendations for Clinical Studies to Determine Performance for Specific Indications for Use # 1. Evidence of HCV infection, where the state of infection or associated disease is not specified. General recommendations for specimens (please refer to section V.B above, "Design and Protocols for Clinical Studies: General Recommendations") should be applied to studying this indication. For a suggested testing and analysis algorithm, please see Table 2. Table 2. Data analysis: supporting claim for evidence of HCV infection, where the state of infection or associated disease is not specified. (Indication 1 per sections IV.C and V.C) A. Assay for presumptive (1st-step) or stand-alone (only-step) detection of anti-HCV (e.g., EIA) | Category per Table 1 | Testing with assay | | Performance | | | |---|--------------------|----------------|-------------|--|--| | Category per rable r | Result | Interpretation | Calculate | Characteristic ^a | | | Not HCV-infected | Negative | TN | TN/ | Agreement for individuals | | | | Positive | FP | (TN + FP) | without serologic evidence of active or inactive HCV | | | Anti-HCV seroconversion | Negative | TN | | infection | | | HCV infection, state or associated disease not determined | Negative | FN | TP / | Presumptive assay Agreement for detecting presumptive serologic evidence of HCV | | | determined | Positive | TP | (TP + FN) | infection (not specified with regard to state of infection or associated disease); positive | | | Anti-HCV seroconversion | Positive | ТР | | results should be supplemented
by testing with another assay
that is more specific for HCV
infection | | | | | | Sign | Stand-alone assay Agreement for detecting serologic evidence of HCV infection (state of infection or associated disease not specified) | | ^a These performance characteristics should not be referred to as clinical sensitivity or specificity nor should the manufacturer calculate predictive values, because *evidence of HCV infection*, where the state of infection or associated disease is not specified is not a clinical indication for use. If these characteristics were determined in different populations, they should be displayed separately in the draft package insert. # B. Assay for supplemental (2nd-step) detection of anti-HCV (e.g., SIA) | Category per Table 1 | Testing with assay | | Performance | | |-----------------------------------|--------------------|--------------------|-------------|---| | Category per Table 1 | Result | Interpretation | Calculate | Characteristic | | Not HCV-infected | Do not | Do not test (None) | (None) | (2 nd step testing not indicated for specimens that yield Negative for 1 st -step. To determine Expected Values, perform assay testing on unselected populations) | | Anti-HCV seroconversion | test | | (Ivolic) | | | HCV infection, state or | Negative | | TP/ | Sensitivity for detecting | | associated disease not determined | Positive | ТР | | supplemental serologic evidence of HCV infection (not | | Anti-HCV seroconversion | Positive | TP | (TP + FN) | specified with regard to state of infection or associated disease) b | ^b This performance characteristic should not be referred to as clinical sensitivity because evidence of HCV infection, where the state of infection or associated disease is not specified is not a clinical indication for use. If additional patient information for certain specimens will be available, it should be indicated in protocols and provided in the PMA. Even though there may not be enough data to support other indications for use, performance for other indications might be considered based on the data presented (for examples, please see Table 3). Table 3. Indication 1 (Evidence of HCV infection where the state of infection or associated disease is not specified) Examples of groups and subgroups that suggest but do not always demonstrate performance for states of infection or associated disease^a A. "Not HCV-infected" category: specificity suggested | Group | Subgroup | Per
criteria | Calculate % [Assay] Positive among | |---|------------------------|-----------------|---| | Hepatitis ^b | | Present | patients with hepatitis | | | | Absent | individuals without hepatitis | | Hepatitis present | Symptoms of hepatitis | Present | patients with symptomatic hepatitis | | An included the second of | | Absent | asymptomatic individuals with hepatitis | | | Acute HAV infection b | Present | patients with hepatitis A | | | Active HBV infection b | Present | patients with acute or chronic HBV | | | Active HDV infection | Present | patients with acute or chronic HDV | | | Acute CMV infection | Present | acute CMV-associated hepatitis | | | Acute EBV infection | Present | acute EBV-associated hepatitis | | AIDS | | Present | patients with AIDS | # B. HCV infection, state of infection or associated disease not determined category: sensitivity suggested | Group | Subgroup | Per criteria | Calculate % [Assay] Positive among | |--------------------------|-----------------------|--------------|--| | Hepatitis ^b | | Present | patients with hepatitis | | | | Absent | individuals without hepatitis | | Hepatitis present | Symptoms of hepatitis | Present | patients with symptomatic hepatitis | | | | Absent | asymptomatic individuals with hepatitis | | | Active HBV infection | Present | patients with concurrent hepatitis B | | | AIDS | Present | patients with AIDS and hepatitis | | State of infection c | | Active | individuals with active HCV infection | | | | Inactive | individuals with inactive (no evidence of current replication) HCV infection | | Active infection | Acute | Present | acutely HCV-infected individuals | | · | Chronic | Present | chronically HCV-infected individuals | | Infecting genotype known | | Determined | individuals infected with HCV genotype [specify] | # 2. Aid in detecting acute asymptomatic HCV infection Please refer to General Recommendations above in sections V.B.6.b.(1) and (2); in addition, - a. Population should represent individuals at high risk of HCV exposure - b. <u>Case report forms</u> should be submitted, with entries for data to demonstrate absence of symptoms and biochemical abnormalities - c. <u>Serial specimens</u> from individuals should be
tested to establish if and when the new EIA yields positive results. Please see section V.B.6.b.(2) above, on acute infection. # 3. Aid in detecting chronic asymptomatic HCV infection Please refer to section V.B.6.b.(3) above, on chronic infection, and to V.C.3.a) and b) immediately above, on population and case report forms. The new assay should not be studied with specimens from the acute phase of infection. For these "asymptomatic" Indications 3 and 4, specificity could also be estimated in a population of "healthy" individuals by categorizing according to Table 1 (please also refer to V.B). This performance characteristic should be expressed separately from those for an at-risk population; please see section V.B.9.b.(1) above, on data analysis for performance characteristics. # 4. Aid in diagnosis of acute hepatitis C Please refer to sections V.B.6.a and B.6.b.(1) & (2) above, on inclusion and exclusion criteria, and section V.C.3.c) immediately above, on serial specimens. In addition, case report forms should be submitted, with entries for data to demonstrate symptoms, biochemical abnormalities, and other evidence of hepatitis; please refer to section V.B.6 above, on inclusion and exclusion criteria. # 5. Aid in diagnosis of chronic hepatitis C Please refer above to sections V.B.6.a and b.(3) above, on criteria for chronic hepatitis and to section V.C.5 immediately above, on case report forms. The new assay should not be studied with specimens from the acute phase of infection. See Figure 1 for a suggested algorithm. ^a These lists represent examples of optional (i.e., they go beyond the minimum recommendations for Indication 1) groups and subgroups that are intended to provide ideas for appropriate types of data and data analysis but are not intended to be all-inclusive. Alternative analyses could be performed by having a different hierarchy of groups and subgroups. b Physical signs, biochemical evidence, or histopathologic evidence per section V.B.6.a on criteria for hepatitis; microbiologic evidence of infection with an agent that causes hepatitis (e.g., acute HAV infection ≡ positive for anti-HAV IgM, active HBV infection ≡ HBsAg-positive) c Inactive ≡ no evidence of hepatitis, repeatedly negative for HCV-RNA, and may represent resolved infection; Active ≡ HCV-RNA Pos or evidence of recent seroconversion (please refer to section V.B.6 above, on inclusion and exclusion criteria). Figure 1. Determining performance: new EIA as aid for presumptive diagnosis of chronic hepatitis C ^a Inclusion criteria for "hepatitis" and "chronic": please refer to V.B.6.a. and V.B.6.b.(3). ^b 2-step testing" for anti-HCV: please refer to V.B.4.a. and Table 1. ^c Criteria for unapproved HCV-RNA assays: please refer to V.B.6.b.(1). ^d Additional characterization may enable sub-categorization and additional conclusions about new EIA performance; please refer to V.B.4.b. ^e Definition of "inactive HCV infection": please refer to V.B.5.c. 6. Aiding diagnosis of hepatitis C (indiscriminate between acute and chronic) This indication should be supported by more data than Indication 1 (i.e., evidence of hepatitis and of active HCV infection: please refer to sections V.B.6.a and b above, on inclusion and exclusion criteria) but less than Indications 5 or 6 because temporal data would not be necessary. # 7. Monitoring active HCV infection - a. Prognosis of acute HCV infection - b. Prognosis of chronic HCV infection without antiviral therapy - c. Predicting response of chronic HCV infection to antiviral therapy - d. Monitoring response of chronic HCV infection to antiviral therapy - e. Prognosis of chronic HCV infection after antiviral therapy is completed or discontinued Several of these indications are already important uses for HCV-RNA assays. For each, there are several concerns: - HCV-RNA concentrations, per the assay, that correspond to clinical-decision points. When the assay is qualitative, this consideration may pertain to selection of one or more cutoffs. - The patient population or subpopulation for which the assay is useful. - The manufacturer of a new quantitative assay should determine values that correspond to clinically significant change(s) in HCV-RNA concentration. - Endpoints should be selected for studies: Results of comparative HCV-RNA assays should be considered while recognizing that none are FDA-approved; please refer to section V.B.6.b.(1) above, on detection of HCV-RNA. Criteria for clinical improvement or worsening, which could include symptoms, signs, ALT, other biochemical markers, and quantified histopathologic changes. Please refer to section V.B.6.a above, on criteria for hepatitis. <u>Length of study period</u>, <u>premarket or postmarket</u> – the manufacturer should consider if the assay's utility pertains to short terms (months to a few years) or for longer periods during which the most serious complications of HCV infection may develop. FDA recognizes that these indications represent a new and rapidly changing area of medical research and practice. For some indications, it may not yet be possible to design appropriate studies. For others, the interval between specimen collection and serious complications of HCV infection may be so long that effects of assay result on outcome cannot be practically studied. Until proven otherwise, FDA will assume that a decrease in HCV-RNA concentration does not represent a detrimental event. Perhaps most important, sponsors should prospectively and clearly define all hypotheses in their clinical protocols regarding the use of HCV-RNA assays as prognostic or monitoring tools and which can also be directly linked to an appropriate indication for use. # REFERENCES Note: all US government documents that are published in Federal Register or in CFR can be retrieved from the Internet at http://www.access.gpo.gov/su_docs/aces/40.html - 1. One Hundred Fifth Congress of the United States of America. Food and Drug Administration Modernization Act of 1997. 1997;S. 830 [retrievable at http://www.fda.gov/cdrh/modact/modern.html]. - 2. National Institutes of Health Consensus Development Conference Panel statement: management of hepatitis C. *Hepatology* 1997;26:2S-10S. [NIH version and other information retrievable at http://odp.od.nih.gov/consensus/cons/105/105 intro.htm]. - 3. Centers for Disease Control and Prevention. Recommendations for prevention and control of hepatitis C virus (HCV) infection and HCV-related chronic disease. *MMWR Morb Mortal Wkly Rep* 1998;47 (No. RR-19):1-54 [retrievable at ftp://ftp.cdc.gov/pub/Publications/mmwr/rr/rr4719.pdf]. - 4. Forns X, Bukh J. Methods for determining the hepatitis C virus genotype. Viral Hepatitis Rev 1998;4:1-19. - 5. Thomas DL, Lemon SM., in Hepatitis C. Mandell, GL, Bennett, JE, Dolin, R. eds. Principles and Practice of Infectious Diseases, 5th ed. New York: Churchill Livingstone, 2000; 1736-59 - 6. Damen M, Cuypers HT, Zaaijer HL, et al. International collaborative study on the second EUROHEP HCV-RNA reference panel. *J Virol Methods* 1996;58:175-185. - 7. Enns RK, Bromley SE, Day SP, et al. Molecular diagnostic methods for infectious diseases; approved guideline. NCCLS document MM3-A, Wayne, Pennsylvania: NCCLS, 1995. - 8. Simmonds P, Holmes EC, Cha T-A, et al. Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region. J Gen Virol. 1993.